您现在的位置:首页 >事业单位 > 阅读资料 >

2019石家庄事业单位数量关系之排列组合快捷方式

2019-04-07 14:03:18| 来源:张家口中公教育

荐:2019年河北石家庄事业单位辅导课程

荐:2019年事业单位备考交流群:836174886

荐:2019年河北石家庄事业单位职位表(3547人)

【导读】中公河北事业单位招聘考试网提供河北人事考试网发布的:2019河北石家庄事业单位报名人数统计汇总(截止4月7日6时),详细信息请阅读下文!更多资讯请关注张家口中公教育微信公众号(offcnzjk)。排列,即指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。故排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列:排列的字母表示是A(m,n),表达的意思是从n个元素中取出m个元素,进行全排列(对m个元素进行排序)。

组合:组合的字母表示是C(m,n),表达的意思是从n个元素中取m个元素,不进行排列(对m个元素不进行排序)。

排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。中公事业单位招聘考试网总结以下4大方法跟大家分享。

一、特殊优先法

特殊元素,优先处理;特殊位置,优先考虑。

例:六人站成一排,求

(1)甲不在排头,乙不在排尾的排列数;

(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数。

【分析】

(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。

类:乙在排头,有A(5,5)种站法;

第二类:乙不在排头,当然他也不能在排尾,有44A(4,4)种站法;

共A(5,5)+44A(4,4)种站法。

(2)类:甲在排尾,乙在排头,有A(4,4)种方法;

第二类:甲在排尾,乙不在排头,有3P(4,4)种方法;

第三类:乙在排头,甲不在排头,有4P(4,4)种方法;

第四类:甲不在排尾,乙不在排头,有P(3,3) A(4,4)种方法;

共P(4,4)+3A(4,4)+4A(4,4)+A(3,3) A(4,4)=312种。

二、捆绑法与插空法

例1:某人射击8枪,4枪,恰好有三枪连续,有多少种不同的情况?

【分析】连续的三枪与单独的一枪不能相邻,因而这是一个插空问题。另外没有的之间没有区别,不必计数。即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。

例2:马路上有编号为l,2,3,……10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?

【分析】即关掉的灯不能相邻,也不能在两端。又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

共C(3,6)=20种方法。

三、隔板法

例:10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?

【分析】把10个名额看成十个元素,把这10个元素任意分成8份,并且每份至少有一个类似该种思维,实际上就是在这十个元素之间形成的九个空中,选出七个位置放置档板,就可以很形象的达到目标。

四、间接计数法

例:三行三列共九个点,以这些点为顶点可组成多少个三角形?

【分析】有些问题正面求解有一定困难,可以采用间接法。

比如说该题直接去求三角形的个数分类太多,比较复杂;换个方式思考,所求问题的方法数=任意三个点的组合数-三点共线的情况数。

【相关推荐】

2019河北石家庄市直事业单位招聘报名入口

2019河北石家庄市事业单位招聘工作人员3547人公告

 注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。
(责任编辑:赵美玲)

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

微信公众号
微博二维码
咨询电话(9:00-21:00)

400 6300 999

在线客服在线咨询

投诉建议:400 6300 999