(二)极值型牛吃草问题
在同一草场放不同的数量的牛有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。
解题技巧:利用原有草量=(牛每天吃掉的草-每天生长的草)×天数,求出草的生长速度,最多的牛的头数=X。
例4、牧场上有一篇青草,每天草都在均匀生长。这片草场可供10头牛20天吃完;或者15头牛10天吃完。问为了保持草永远都吃不完,那么最多能放多少头牛?
中公解析:在同一草场放不同的牛数有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。属于牛吃草问题的极值型问题。
设每头牛每天吃的草量为单位1,草的生长速度为X。
原有池水量=(10-X)×20=(15-X)×10.X=5.
即:最多可放5头牛。
(三)多个草场牛吃草问题
在不同一草场放不同的牛数有不同种吃法,其中每头牛每天吃的草量和草每天生长的量都不变。
解题技巧:最小公倍数寻找多个草场的面积的“最小公倍数”,然后将所有面积都转化为“最小公倍数”同时对牛的头数进行相应的变化,转化成原有草量相同的标准的牛吃草问题。
例5、30亩的草场20头牛15天吃完;25亩的草场15头牛30天吃完;问50亩的草几头牛12天吃完?
中公解析:不同一草场放不同的牛数有不同种吃法。判断为牛吃草问题的不同草场问题。
30、25、50的最小公倍数为300。则原题等价于“300亩200头牛15天吃完;180头牛15天吃完;可供多少头牛吃12天?”
设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N。
原有池水量=(200-X)×15=(180-X)×30.X=160,N=210.
中公教育提醒考生,牛吃草问题在行测考试中是考试必须要熟练掌握并且必须要快速做出解答的题型,在这类题目的求解过程中,一定要判断题型确定是标准牛吃草、极值型还是不同草场问题,找出牛和草,利用基本模型的解题技巧快速解题。
欢迎关注中公张家口中公教育考试频道
1 2
免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。