二、逆向和定最值
所谓逆向和定最值,即求最大数的最小值是多少或者最小数的最大值是多少。
解题方法——求平均数法,即将总数求平均值再分配余数
例1 祁同伟偶得21张名画,于是他决定将这些名画进献给高育良、侯亮平、李达康、沙瑞金、高小琴5人,而且每人所得名画数量均不相等,那么得到名画最多的高育良最少可以得到几张?
【中公解析】首先题意判断名画总数一定,求得名画最多者最少有几张,是逆向的和定最值问题,因此,可用求平均数法。先求出21÷5=4……1,再将平均数4写在最中间即第三多的下面,并推出其他几个值分别为:
高育良 第二多 第三多 第四多 最少
6 5 4 3 2
然后分配余数1,这1张只能分配给最多的高育良,若分配给其他人则不满足题意(每人所得名画数量均不相等),因此,高育良最少可得:6+1=7张。
若将此题目中总数21改为22,则22÷5=4……2,同样将平均数4写在最中间即第三多的下面,并推出其他几个值分别为:
高育良 第二多 第三多 第四多 最少
6 5 4 3 2
然后分配余数2,2可以分别分配给高育良及第二多各1个,因此,高育良最少可得仍然为:6+1=7张。
因此,在解决逆向和定最值问题时,余数的合理分配非常重要,考试时要谨慎对待。
编辑推荐》》》
免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。