2017省考公告 | 职位表 | 大纲 | 报名入口 |
排列组合是公务员考试的必考题型,也是绝大部分文科考生所畏惧的,但困难和机遇并存,排列组合考点繁多,每一种模型对应相应解法,若能熟悉其特点,必能在考试时快速准确解出,取得相应分数。中公教育希望以下讲解,帮助考生掌握隔板模型,增强对公考数学的信心。
隔板模型本质为相同元素分不同堆的问题,这类问题的描述类似于:
把6个苹果分给甲乙丙三个不同的小朋友,每个小朋友至少一个的分法总共有多少种?
那么可以假设6个苹果“站”在甲乙丙三个人的前面,只要在6个苹果中间插入两个相同的板那么就可以把苹果分成三堆,其中第一堆默认分给甲,第二堆默认分给乙,第三堆默认分给丙,根据两个板插入位置的不同,各种分法都能够出现,所以总的分法就为:5个空当中插入两个板,即为 。拓展一下即为:把n个相同元素分给m个不同的对象,每个对象至少1个元素,则有 种不同分法。
例1:某单位订阅了 30 份学习材料发放给 3 个部门,每个部门至少发放 9 份材料。问一共有多少种不同的发放方法?
A.7 B.9 C.10 D.12
【中公解析】
此题为相同元素分推问题,为第一种变形题,其所不同的公式中的使用条件为至少1个,此题为至少9个,故不能直接套用。那么需要转化,第一步要均分到三个部门的材料数为8×3=24(份),因为材料一样,分法数为1种;第二步转化为30-24=6份分3个部门,至少1个,则方法数为=10,选c
例2:刘老师有 10 支一模一样的铅笔,想要分给四个学生,他还没有想好每个学生分几支,问刘老师可能的分法有几种?
A.285 B.286 C.287 D.288
【中公解析】
此题为相同元素分推问题,为第二种变形题,其所不同的公式中的使用条件为至少1个,此题为至少0个,故不能直接套用。那么需要转化,第一步为向4个学生的都借1支,因为材料一样,借法数为1种;第二步转化为10+4=14份分3个部门,至少1个,则方法数为=286,选B。
我们在考试中经常碰到此类隔板模型,需要对题目进行适当转化,使之变成大家常见的形式,就能简化运算达到快速解题的目的,中公教育希望考生能够多总结,再不断辅以练习,相信这类题型将不再是大家备考路上的“拦路虎”。
欢迎关注中公张家口中公教育考试频道
免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。